Towards a Katona type proof for the 2-intersecting Erdös-Ko-Rado theorem
ثبت نشده
چکیده
منابع مشابه
Towards a Katona Type Proof for the 2-intersecting Erdos-Ko-Rado Theorem
We study the possibility of the existence of a Katona type proof for the Erdős-Ko-Rado theorem for 2and 3-intersecting families of sets. An Erdős-Ko-Rado type theorem for 2-intersecting integer arithmetic progressions and a model theoretic argument show that such an approach works in the 2-intersecting case.
متن کاملErdös-Ko-Rado from intersecting shadows
A set system is called t-intersecting if every two members meet each other in at least t elements. Katona determined the minimum ratio of the shadow and the size of such families and showed that the Erdős–Ko–Rado theorem immediately follows from this result. The aim of this note is to reproduce the proof to obtain a slight improvement in the Kneser graph. We also give a brief overview of corres...
متن کاملNote Erdős–Ko–Rado from intersecting shadows
A set system is called t-intersecting if every two members meet each other in at least t elements. Katona determined the minimum ratio of the shadow and the size of such families and showed that the Erdős– Ko–Rado theorem immediately follows from this result. The aim of this note is to reproduce the proof to obtain a slight improvement in the Kneser graph. We also give a brief overview of corre...
متن کاملShifting shadows: the Kruskal–Katona Theorem
As we have seen, antichains and intersecting families are fundamental to Extremal Set Theory. The two central theorems, Sperner’s Theorem and the Erdős–Ko–Rado Theorem, have inspired decades of research since their discovery, helping establish Extremal Set Theory as a vibrant and rapidly growing area of Discrete Mathematics. One must, then, pay a greater than usual amount of respect to the Krus...
متن کاملErdös-Ko-Rado and Hilton-Milner Type Theorems for Intersecting Chains in Posets
We prove Erdős-Ko-Rado and Hilton-Milner type theorems for t-intersecting k-chains in posets using the kernel method. These results are common generalizations of the original EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an exact EKR theorem (for all n) using the shift met...
متن کامل